侵权投诉
技术:
CPU/GPU 传感/识别 显示/微投影 追踪/定位 电池/电源管理/驱动 声学/光学 通信 OS/软件/算法 云服务/大数据 材料 其它
终端:
头盔 眼镜/盒子 一体机 配件 服务 渠道
应用:
游戏 影视/动漫 娱乐 医疗 军事 媒体 旅游 购物/餐饮 教育 工业/农业 家居 设计 其它
当前位置:

OFweekVR网

其它

正文

增强现实显示器是如何工作的?

导读: 对微软和Magic Leap而言,波导技术是AR光学的登月项目,有希望被大众市场接受。

  由于科幻电影的影响(《钢铁侠》和《星际迷航》等等),人们一直在憧憬着全息光学透镜的出现。那么增强现实显示器的工作原理是什么呢?游戏开发者Aaron Yip在Quora(国外著名问答网站)进行了解答,下面是整理的文字。

  先让我们从基础开始。我们有这些部分透明的显示器,可把数字影像与真实世界相混合。光线需要在一定东西上反弹以重定向到你的眼睛。在现实世界,我们已经得到重定向的光线。对于数字世界,我们需要创建人工光线(例如通过LED,OLED),然后重定向它们。将生成的计算机图像与真实世界结合的光学装置称为“组合器 ”(Combiner)。 基本上,组合器的工作原理类似于部分反射镜,即重定向显示光,并选择性地让光从真实世界通过。这很简单。

  光学硬件解决方案可以分为两类:常规HMD光学组合器和新兴波导组合器。这两者都非常不同,有着非常不同的权衡。

  自上世纪60年代以后便出现了透视显示器。因此,这产生了许多不同的光学技术,但基本上都是分辨率、视场、眼盒、图像质量、硬件重量/适配、形状参数和其他特征之间的权衡。在理想情况下,每个人都希望时尚轻便的眼镜,有着200×100度的视场(匹配人眼),以及由《钢铁侠》主角托尼·史塔克发明的完美图像质量。但由于头显/近眼显示器等等存在物理和光学的限制,使得这在可预见的未来中成为不切实际的幻想。所以我们需要思量上述提到的权衡。

  光学硬件完全在于权衡

  传统的组合器可产生合理的透视和成像质量,具有一致的性能和得益于几十年供应链发展而带来的所能负担得起的材料。下图是两个常见的实现方式:作为平面组合器示例的偏振光束组合器(左上);作为弯曲组合器示例的离轴组合器(右上)。

  偏振光束组合器的实例包括谷歌眼镜,以及爱普生、瑞芯微(Rockchip)和台湾工业技术研究院的智能眼镜。分束器可以使用LCOS(硅基液晶)微型显示器进行偏振,例如谷歌眼镜;或者仅使用简单的半色调反射镜。可惜的是,由于组合器的重量和尺寸限制,基于偏振光束组合器的显示器的视场通常较小,并且可能存在光束分离导致的附加模糊,造成分辨率较低。谷歌眼镜的视场为13度FOV,而爱普生BT-300为23度,分辨率是1280×720。两者都处于消费者显示器可接受范围的低端。然而,更大的FOV和/或分辨率将需要更大和更重的硬件。

  优点:轻、小、相对实惠(500美元-700美元左右)

  缺点:有限的视场和分辨率,难以改进。

  离轴、半球形组合器的最佳现代示例是Meta 2。与其他品种的小型和轻型组合器不同,Meta倾向于更大的FOV和显示分辨率。他们推出单个OLED平板以支持“几乎90度FOV”和2560×1440像素。然而,他们的硬件体积巨大,跟VR头显(如Oculus和HTC Vive)相似。另外的问题包括较低的角分辨率(较少细节/图像不够清晰),以及组合器的塑料材料如何维持其质量(例如,随着时间的推移轻微的抖动会得到强化,可能导致最终的视觉假象)。但这是他们为降低成本而做出的选择。弯曲组合器另一个更早的实例是Link的Advanced Helmet Mounted Display。

  优点:宽视场和高分辨率,相对实惠(900美元左右)

  缺点:大而笨重,较低的角分辨率,材料质量风险。

1  2  下一页>  
声明: 本文由入驻OFweek公众平台的作者撰写,观点仅代表作者本人,不代表OFweek立场。如有侵权或其他问题,请联系举报。

我来说两句

(共0条评论,0人参与)

请输入评论

请输入评论/评论长度6~500个字

您提交的评论过于频繁,请输入验证码继续

暂无评论

暂无评论

文章纠错
x
*文字标题:
*纠错内容:
联系邮箱:
*验 证 码: