侵权投诉
技术:
CPU/GPU 传感/识别 显示/微投影 追踪/定位 电池/电源管理/驱动 声学/光学 通信 OS/软件/算法 云服务/大数据 材料 其它
终端:
头盔 眼镜/盒子 一体机 配件 服务 渠道
应用:
游戏 影视/动漫 娱乐 医疗 军事 媒体 旅游 购物/餐饮 教育 工业/农业 家居 设计 其它
订阅
纠错
加入自媒体

AR眼镜光学主流:光波导技术方案及加工工艺全解析

2020-05-29 14:03
VR陀螺网
关注

6. 衍射光波导的微纳制造

6.1 浮雕光栅波导制造

如上所述,表面浮雕光栅从维度上可分为一维和二维光栅,而在结构上可分为直光栅、闪耀光栅和倾斜光栅。由于增强现实光波导用于可见光波段,为了实现较大的衍射效率和视场角,其特征尺寸一般在数百纳米,甚至几十纳米,且其性能对误差容忍度较小,所以对微纳加工制备提出了很大的挑战。目前的衍射光波导制备基本都是基于半导体制备工艺(如光刻、刻蚀工艺)完成。但是,由于这些方法受其复杂、昂贵的设备的限制,生产成本非常高,不适合光学模组的大批量制备。

图14所示为表面浮雕光光栅模板制备或小批量制备工艺流程图,包括其扫描电镜图。对于直光栅,其工艺较为成熟,首先在基底上旋涂抗蚀剂层,通过干涉曝光或电子束曝光实现光栅的图案化,之后利用反应离子刻蚀(RIE)或电感耦合等离子体刻蚀(ICP)将图案转移到基底,并将抗蚀剂层去除,完成直光栅的制备。而由于均匀性问题导致以HoloLens为代表的斜光栅光波导无法直接采用反应型刻蚀方案准备,所以制备工艺较为复杂,需要采用聚焦离子束(focused ion beam etching,FIBE)、离子束刻蚀(ion beam etching,IBE)、反应离子束刻蚀(reactive ion beam etching,RIBE)技术所制备。综合考虑到效率和均匀性,RIBE是其中较合适的方案。首先,将基底上通过物理或化学方法镀一层硬掩模(如Cr)层,之后旋涂一层抗蚀剂层。同样利用干涉曝光或电子束曝光进行图案化,之后通过氯干刻蚀工艺将抗蚀剂图案转移到Cr层。在刻蚀工艺之后,用氧等离子体法剥离剩余的抗蚀剂层。接下来使用基于氟基的RIBE工艺用电离的氩离子束以倾斜的角度入射基底。在反应离子束刻蚀之后,通过标准的湿法刻蚀工艺去除Cr掩模,获得具有出色均匀性的斜光栅。

A close up of a signDescription automatically generated

图14:表面浮雕光栅模板或小批量制备工艺流程

上述基于半导体工艺的制备成本昂贵,不适合光栅波导量产加工。因此,衍射光波导的复制工艺随即被开发出来以便实现大批量生产,而这这种大规模的制造工艺依赖于高折射率的光学树脂,目前Magic Leap和WaveOptics已经进行相关工艺的验证。复制工艺包括热压法(hot embossing)、紫外线纳米压印光刻法(UV-nano imprint lithography)和微接触压印法(micro contact printing,亦被称为软光刻)。其中紫外线纳米压印光刻是表面浮雕光栅波导批量生产中的常用方法。

具体工艺流程如图15所示,该工艺可分为两个阶段:纳米压印工作模具制备阶段和批量生产阶段。首先,通过上述模板制备工艺将图案加工到硅晶圆上以用作模板,通过纳米压印技术在更大的硅晶片上旋涂UV树脂并在上面印刷更多的模板。然后使用紫外线对印刷的结构进行曝光以固定树脂。最后通过重复上述过程批量生产多图案的压印模具。在批量生产的过程中,使用多图案的模具来生产表面浮雕光栅波导,然后使用功能性涂层覆盖波导,并用激光切割技术分离,最后将不同结构的波导堆叠实现光学模组的制备。

A screenshot of a cell phoneDescription automatically generated

图15:表面浮雕光栅大批量复制量产工艺

6.2 体全息波导制造

体全息波导的制备基础是干涉曝光,通过使用激光激发的干涉图案曝光附着在基底上的光敏折射材料,材料特性根据光的强度分布而变化,最后获得具有折射率周期性变化特性的材料。制备体全息波导的材料包括卤化银、重铬酸盐明胶、光敏聚合物、全息高分子分散型液晶以及其他更奇特的材料。对于体全息图的记录过程大都相似,但是一般的曝光仅适用于小批量验证,而对于大批量生产,需要开发更加经济的方案,以Sony和DigiLens为代表的公司开发了体全息波导的加工工艺流程。

如图 16 展示了制备体全息波导的卷对卷(roll-to-roll)工艺。首先,使用双束干涉曝光法在附着在卷胶上的光敏聚合物膜内形成体全息波导;第二步,通过注射成型法形成高质量的环烯烃聚合物塑料波导。为了获得合格的图像,波导的翘曲必须小于5um,并且有效区域的厚度变化应小于1um。然后进行全息光学元件的转移工艺以将全息波导膜准确地与塑料波导对准粘贴;之后将塑料全息波导进行切割;最后在配色过程中,将红、蓝塑料波导与绿色塑料波导对准并用UV树脂将其封装固定。塑料基底在每次加工之前和之后都均应保持平坦是冲压和配色过程中都面临的挑战。图 16 展示了带有绿色、红色、蓝色以及全色塑料VHG波导的照片。

A screenshot of a cell phoneDescription automatically generated

图16:卷对卷体全息波导制备工艺

7、展望

AR技术中的波导方案逐渐成为主流技术,所以本文对几何波导方案(包括锯齿波导方案和镀膜阵列波导方案)、浮雕光栅波导方案、全息光栅波导方案做了详细介绍,同时也介绍了全息透镜方案,并展示了珑璟光电的部分相关样品。棱镜方案、Birdbath方案和自由曲面方案由于体积因素的限制本文未做详细介绍。

偏振阵列波导方案具有轻薄、大眼动范围和色彩均匀性好的优点,在设计和加工均有很高的技术壁垒,珑璟光电在此领域深耕多年,完全实现了从设计到加工的自主化,率先在国内实现了镀膜阵列波导的大规模量产。珑璟光电位于深汕投控时尚品牌产业园的16454平米的生产基底将于今年八月正式投产,也代表了偏振阵列波导技术新的发展里程碑。成熟的设计方案和大规模的量产能力使得偏振阵列波导方案在未来五年内都将是AR领域的主流方案。

锯齿波导方案相对于偏振阵列波导方案,加工工艺路线相同,工艺难度一致,但是锯齿波导的杂光严重,能量利用率低,对比度低,成像解析度一般,所以使得锯齿波导方案在AR领域难以成为主流方案。

浮雕光栅波导方案具有大视场和大眼动范围的优势,同时由于纳米压印的便利性,受到了越来越多的关注。但是浮雕光栅波导目前的主要问题有,1、色彩不均匀和彩虹效应;2、反射和透射级次特性所导致的波导片正反两侧均有图像信息耦出;3、纳米压印的良率问题。所以短时间内浮雕光栅波导方案很难成为主流方案,设计方案的进一步成熟和量产良率的提升预计还需要一定的时间。珑璟光电与湖南大学积极开展浮雕光栅波导的产学研合作,合作创建了珑璟光电-湖南大学深圳研究院微纳光学研究中心,积极部署微纳加工设备,在设计与加工方面推动浮雕光栅波导方案的发展。

体全息光栅波导方案具有色彩均匀性好和易于实现单片彩色波导的优势,但是其采用全息干涉曝光的方法进行波导片的加工,限制了其大规模的量产。同时,做大FOV需要叠加多层全息光栅,增加了工艺难度,做彩色波导片需要高密度的曝光材料,进一步增加了工艺难度。所以,体全息光栅波导方案在AR领域也很难短时间内成为主流方案。

全息透镜方案使用和全息光栅波导方案相同的全息光栅曝光工艺进行加工,具有大FOV的优势,但是受限于眼动范围太小的影响,只在个别领域有所应用。

综上所述,偏振阵列波导方案和浮雕光栅波导方案是目前两个最有前景的主流AR方案,一个代表着现在,一个代表着未来。珑璟光电率先在国内实现偏振阵列波导的大规模量产,同时积极部署浮雕光栅波导方案,希望为AR事业得发展尽力发光。

<上一页  1  2  3  4  
声明: 本文由入驻维科号的作者撰写,观点仅代表作者本人,不代表OFweek立场。如有侵权或其他问题,请联系举报。

发表评论

0条评论,0人参与

请输入评论内容...

请输入评论/评论长度6~500个字

您提交的评论过于频繁,请输入验证码继续

暂无评论

暂无评论

推荐专题

VR 猎头职位 更多
文章纠错
x
*文字标题:
*纠错内容:
联系邮箱:
*验 证 码:

粤公网安备 44030502002758号