侵权投诉
技术:
CPU/GPU 传感/识别 显示/微投影 追踪/定位 电池/电源管理/驱动 声学/光学 通信 OS/软件/算法 云服务/大数据 材料 其它
终端:
头盔 眼镜/盒子 一体机 配件 服务 渠道
应用:
游戏 影视/动漫 娱乐 医疗 军事 媒体 旅游 购物/餐饮 教育 工业/农业 家居 设计 其它
订阅
纠错
加入自媒体

FACEBOOK/谷歌/微美全息等AI深度学习+AR技术助力交互显示扩展应用场景

2020-07-30 12:02
来源: 粤讯

微美全息:

而微美全息的全息AI云服务更是在行业中独树一帜。在现有的云服务市场中,科技巨头占据多数,构建基于人工智能的云服务将成为巨头的下一个主战场。AI是信息基础设施的一个升级,是今后产业发展的巨大引擎。巨头都想把握升级过程中涌现的大量机会,赋能全行业。第二,开源是一种开放式创新。通过开源深度学习平台,不仅可以吸引大量开发者,还可以为机器学习提供大量的数据支持,以及大量的现实场景。

无论是对软件开发者的内容生成解决方案,还是针对不同硬件设备的AR功能和服务解决方案,微美全息始终致力于通过领先的AI技术为客户和产业进行赋能,并与国内外领先的合作伙伴构建完整的AR内容及应用开发生态,共同推动AR应用落地及发展。

微美全息科技已集全息AI云移动软件开发商、处事商、运营商身份于一身,也成为海内领先的全息AI领域整合平台之一。在技术储备上超过4654个全息内容IP储备,细分行业龙头企业。各环节技术成熟,客户数量为485,全息AR专利数为224,其中132项专利和92项待审批专利,技术方面日趋成熟。其商业应用场景主要聚集在家用娱乐、光场影院、演艺系统、商业发布系统及广告展示系统等五大专业领域。

微美全息(WIMI.US)以“眼界即视界”为使命,公司建立了全球顶级、自主研发的深度学习平台和超算中心,并且研发了一系列AI技术,包括:人脸识别、图像识别、文本识别、医疗影像识别、视频分析、无人驾驶和遥感等。全息3D人脸识别软件的开发基于微美的全息成像特征成像检测和识别技术、模板匹配全息成像检测技术,以及基于深度学习和训练的视频处理和识别技术。传统的2D面部识别技术是一种基于面部特征的识别技术,它从面部图像或面部视频流中捕获信息,并自动检测和跟踪目标面部;微美的全息3D面部识别技术是全息成像捕捉和3D肖像的结合的识别技术。

全息AR行业是技术密集型的。全息AR体验只能通过硬件和软件技术的结合来实现,并且与全息AR相关的技术进步将把全息AR体验带入下一阶段。例如,深度学习AI技术的突破将使全息AR设备能够以更加无缝的方式集成由摄像机捕获并由计算机模拟的内容,从而为用户提供更加身临其境的体验。此外,集成芯片的发展将使图像处理器以更低的成本生产,从而降低全息AR器件的销售价格。5G网络的广泛采用将使本地设备和互联网之间的实时数据传输成为可能,从而大大增强了内容的多样性。

谷歌:

谷歌一直是支持使用深度学习技术的一股强大力量。深度学习如今在前沿应用中非常普遍,它几乎与人工智能是一个意思了。原因很简单——它的效果明显。运用深度学习,可以破解困扰数据科学家几十年的难题,比如语音和图像识别,以及自然语言生成问题。

2011年,谷歌成立谷歌大脑项目,这是他们首次公开对深度学习潜在可能性的探索。第二年,谷歌宣布他们已经建立了一个神经网络,用来模拟人类的认知过程。这个网络在16000台电脑上运行,在学习了大约1000万张图像之后,它能够成功识别出猫。

2014年,谷歌收购了英国深度学习初创公司DeepMind。DeepMind将现有的机器学习技术和神经科学的前沿研究联系起来,开创了一种新的研究方法,让系统更精确,就像大脑一样有了智力。

DeepMind研发出了Alpha Go,为了验证算法执行任务的能力,他们让系统玩电子游戏,后来又让系统下围棋,在这个过程中他们发现系统的技术越来越高超。

谷歌在邮件服务中是如何使用深度学习的?

当证明了深度学习在实验室和游戏竞赛中很有效果之后,谷歌悄然将这项技术推向了更多的服务领域。

第一次实用是在图像识别中,可以用它对谷歌索引出的互联网上的数百万张图片进行分类。这样做可以让图像分类更精确,从而为用户提供更准确的搜索结果。

谷歌目前在深度学习的研究中,在图像分析领域的最新突破是图像增强。这包括重建或填充图像中缺失的部分,这种功能是通过从现有的数据中推断,以及利用学到的其他类似图像实现的。

Google Cloud Video Intelligence向用户开放视频分析功能。用户将视频传到谷歌服务器上之后,这个平台可以对视频的内容进行分割和分析,可以自动生成摘要,如果视频内容有可疑之处,AI甚至还会发出安全警报。

语言处理是谷歌运用深度学习的另一个服务领域。谷歌AI语音识别助手运用深度神经网络来学习如何更好地理解语音指令和问题。谷歌大脑开发的技术已经在这个项目中有所运用。

最近,谷歌的翻译服务也运用了谷歌大脑开发的技术。在新的谷歌神经机器翻译系统上进行翻译,可以将一切都任务都转移到深度学习环境中。

另外,运用谷歌大脑的技术,可以在Youtube上提供更多个性化的推荐。当我们在谷歌的服务器中浏览内容时,它会监控和记录我们的浏览习惯。已经有数据显示,为用户推荐他们想要看的视频是提高用户留存率的关键,留住了用户之后就有源源不断的广告费了。深度神经网络能充分的用来研究和学习用户的习惯和偏好,不断推荐用户喜欢的内容。

总的来说,这一切加起来才是真正的沉浸式虚拟体验,每个人都可以从各种设备中享受这些体验。尽管在整个行业中,要想实现真正的AR未来还需要我们取得更大进步,但许多伟大的公司和伟大的头脑正在共同努力,使我们的梦想早日成为现实。

<上一页  1  2  
声明: 本文系OFweek根据授权转载自其它媒体或授权刊载,目的在于信息传递,并不代表本站赞同其观点和对其真实性负责,如有新闻稿件和图片作品的内容、版权以及其它问题的,请联系我们。

发表评论

0条评论,0人参与

请输入评论内容...

请输入评论/评论长度6~500个字

您提交的评论过于频繁,请输入验证码继续

暂无评论

暂无评论

    推荐专题

    VR 猎头职位 更多
    文章纠错
    x
    *文字标题:
    *纠错内容:
    联系邮箱:
    *验 证 码:

    粤公网安备 44030502002758号