侵权投诉
技术:
CPU/GPU 传感/识别 显示/微投影 追踪/定位 电池/电源管理/驱动 声学/光学 通信 OS/软件/算法 云服务/大数据 材料 其它
终端:
头盔 眼镜/盒子 一体机 配件 服务 渠道
应用:
游戏 影视/动漫 娱乐 医疗 军事 媒体 旅游 购物/餐饮 教育 工业/农业 家居 设计 其它
订阅
纠错
加入自媒体

VR技术在民航训练领域中的应用与定位

2020-04-30 17:39
VR陀螺网
关注

4.5. 纱窗效应

当前VR设备的显示像素密度还普遍偏低,影像进入人眼的像素密度未达到视觉分辨率极限,人们可以看清显示原件上的晶格,造成了所谓的晶格效应或者叫纱窗效应。

纱窗效应除了会造成使用者观看上的不适,还会对很多行业应用带来一些问题,在很多民航训练场景中如果使用VR设备进行训练,有可能会因为纱窗效应无法看清目标,比如在飞机座舱如果离针式仪表稍微远些,表针的宽度就会降到一个像素以下,人们就无法看清表针,类似的情况还有很多,机务和乘务人员也会因为纱窗效应看不清屏幕或者标签上的字符,必须凑近才可以,这不仅让训练操作变得别扭,与受训者日常的操作习惯是不符的。

纱窗效应不仅与VR显示单元的像素密度有较大关系,还与光学机构设计有关,这些领域的迭代速度很快,相信不久的将来纱窗效应就能得到很好的解决。

4.6. 输入方式灵活度和精度有限

现在VR系统常见的输入方式是手柄,少数厂商如Oculus已经较好的解决了手势追踪问题。手柄方式现在主要问题是灵活度不足,虽然Quest等VR装置的手柄能部分模拟人手的动作,实现抓握、指向、按压等基本动作,但对于复杂的手部操作就无能为力了。而手势追踪技术现阶段能够实现的精度不足,并且在没有力反馈辅助的情况下, “空对空”的操作精度更加有限。

在民航训练领域有很多需要精细操作的训练,比如在驾驶舱控制面板上旋钮和电门密集度非常高,无论手柄还是手势操作都无法实现快速而准确的定位和操作。机务训练领域有一些细小零部件的拆装,需要细微的动作和高精度的操控,现有VR输入设备也无法实现。

波音737飞机顶部控制面板集旋钮和电门非常密集

4.7. 眩晕

眩晕在医学上叫晕动症,是一种普遍的生理现象,不仅发生在使用VR设备的时候,晕车、晕船也是晕动症。一般认为晕动症是因为人类视觉系统和前庭系统的感知冲突造成的,沉浸的VR场景通过欺骗人类的视觉系统让人产生了运动的感觉,而前庭系统却无法感知到这种运动,两者发生了冲突,导致了晕动症。VR从原理上无法完全避免晕动症的产生,只能尽可能的降低它的发生概率,一般会从硬件和软件上同时进行改进,比如降低延迟、改进内容的制作方法等等,从实践来看现在的VR设备和内容产生的眩晕已经比VR设备刚推出的几年有了很大的改善。

从我们在航空领域的VR开发实践来看,眩晕的产生一般认为是没有规律的,和身体状况、飞行经验没有直接关系。个别些经验丰富,身体强壮的飞行员正确使用VR设备时也会产生眩晕,而一些身体瘦弱不经常运动的人却能够承受高运动强度的VR内容。这就给VR应用在行业推广带来麻烦,因为无法预测哪些使用群体和个体会产生眩晕,无法使用VR设备。如果一种VR训练应用不能普及到每一个人,有个别人因为眩晕无法使用的话,一般来说这种应用就无法真正在行业中有效推广。

4.8. 视力损伤

现在还没有明确的医学证据证明VR设备的使用会带来明显的视力损伤,同时也没有足够的证据证实使用VR设备不会造成视力问题。但是现代社会电子产品对青少年视力造成的伤害已经成为比较严重的社会问题,对这个问题的担忧往往会传导到在VR设备的使用上。我们在参与飞行学员的训练项目时,经常会被问到是否会导致飞行学员视力损伤,我们也没有足够的证据证明它的安全性,这就导致在涉及飞行员相关的训练时,VR的应用就非常谨慎,甚至对导致项目失败。

5. VR技术在民航训练领域中的应用定位

我们认为所有技术的成长和发展都会遵循丛林法则。在丛林里有复杂的生态多样性,多种生物共存形成一个复杂的生态系统,这些生物既竞争又合作,每种生物都有独特的优势和地位,没有哪种生物具有全面的生存优势,独享整个空间。狮子即使再强大,也不可能在草原上只有狮子一种动物,羚羊和昆虫都因为独特的优势生存下来。而每种生物也有自己最适合的生存空间范围,雨林里大猩猩在树上称霸,但是如果掉到河里也只能成为鳄鱼的美餐。

VR设备和PC、电视、平板电脑、手机等设备一起共同组成了交互设备的生态圈。有观点认为VR/AR将来会替代掉手机、平板电脑,我们不这么认为,VR设备和手机都拥有不同的优势,会长期共存,不可能完全互相替代,两种设备都会在它适用范围内充分发挥它的效能。在民航训练领域也一样,VR技术只有在其适用范围内进行应用才能充分发挥其效能,获得好的训练效果。我们从飞行员、机务人员和乘务人员的训练三个角度分别对其适用范围和应用可能性予以分析。

5.1. 飞行员训练

飞机驾驶与其他驾驶工作一个重要差异就是高脑力负荷,即指在某些飞行阶段需要在极短时间内迅速而准确的完成一系列的判断和操作。飞行员需要同时调动多种感觉器官对外界信息进行感知,除了用视觉感知外部视景和仪表参数、听觉感知告警声响外,还需要通过前庭系统感知飞机的运动状态,通过力反馈感知飞行手柄的反馈力度和各种控制键的状态。这些操作需要通过反复的训练转化为熟练的认知反馈和带有肌肉记忆性质的动作技能。而大部分涉及力反馈的训练都需要实体设备,现阶段VR设备的力反馈设备无法达到要求。VR设备到底能在飞行训练过程中发挥怎样的作用,还需要通过规避现有VR技术局限寻找合适的应用场景。此外还需要考虑合规的要求,必须在民航法规规则范围内开展训练。具体来说,我们认为现阶段要想在飞行员训练中应用VR技术的优势就必须避开需要力反馈参与的训练内容。

5.1.1. 驾驶舱布局学习与熟悉

商用客机的驾驶舱布局非常复杂,飞行学员在进入程序训练前需要熟记各个面板上的仪表和控制设备的位置和功能。成本的原因不会在飞行模拟器上进行学习,一般采用挂图的方式或者在IPT(程序练习器)上进行。挂图是平面形式,需要通过理解建立起和驾驶舱形成的空间映射,这种技能迁移效率比较低。IPT虽说是低端的训练设备,但也涉及硬件和软件的投入,面向个体的普及率无法达到较高的水平。这一类的训练便可以使用VR技术手段进行替代,飞行学员可以佩戴VR头盔在沉浸式环境下进行布局学习,VR技术能够很好的再现真实座舱环境,其技能迁移程度非常高。

使用VR设备进行驾驶舱布局学习与熟悉一般在飞行驾驶技能形成的初期阶段,以个人学习的形式为主,在这一阶段局方并未强制约定哪种手段进行,因此对VR技术的应用没有法规障碍,关键还是取决于用户和局方对应用方案培训效果的认可程度。这种训练应用不需要力反馈参与,如果广泛推广,其终端成本很低,需要注意的是尽量采用分辨率高的VR设备,防止纱窗效应带来的仪表读取困难。

5.1.2. 高等级训练设备的辅助训练工具

尽管全动(D级)飞行模拟器的训练效果最佳,但由于其价格非常昂贵,航空公司处于训练成本的考虑,无法大量使用高等级训练设备来进行人员培训。为了合理利用训练资源,飞行员在进入全动模拟器之前需要先在成本相对较低的IPT(程序训练器)上完成基础的程序训练。不过IPT的成本依然比较高,教员数量也有限,因此也面临无法大规模应用的矛盾。

我们可以利用VR程序进行预先训练解决这一问题,也就是在进入高等级训练设备训练之前,学员先在VR环境下将整个操作程序进行熟悉,保证在进入训练设备进行操作技能训练之前,已经熟知了这些技能的认知内容,进而再利用带有力反馈的真实飞行手柄和控制装置来训练需要有肌肉记忆的动作技能。这相当于在高等级训练设备和书本、CBT之间加入一级VR训练装置,进行程序性认知技能训练。这样会大大提高整体的训练效率和水平。该种方法目前已经在美国空军飞行员培训的PTN计划中得到应用,最终结果证明了插入的这个VR训练装置会大大提高整体的训练效率,减少了在高等级训练设备上的训练时间。

插入VR程序训练应用实际上就是细分了训练级别,充分利用了VR训练应用低成本的优势,将程序操作训练内容剥离出来单独进行训练,并且绕开需要力反馈参与的技能训练。而且这种VR应用的方式只是辅助训练方式,最终还是需要满足局方对高等级训练设备的使用要求,但这种培训方案的设计,解决了合规的问题,最终提高了整体训练效率。

5.2. 机务技能训练

笔者是航空机务出身,有过很多年的机务教育培训经历,机务技能培训一般分为三种类型:基本技能训练、维护流程训练和排故训练。基本技能训练主要是指拆装保险、开关舱口盖等涉及细微手部和肢体动作的动作技能训练,这类训练需要通过反复操作形成肌肉记忆,最终形成熟练的动作技能。这类精细操作动作技能会涉及到力反馈,往往需要通过工具的力反馈来判断施力角度和力度,现阶段VR领域的输入方式精度有限,力反馈技术很不成熟,难以提供训练所需要的高精度输入和力反馈,所以这类训练不适合在VR方式下进行。而另外两种类型技能训练则是VR技术的优势所在:

Tengo interactive的民航机务训练软件

<上一页  1  2  3  4  下一页>  余下全文
声明: 本文由入驻维科号的作者撰写,观点仅代表作者本人,不代表OFweek立场。如有侵权或其他问题,请联系举报。

发表评论

0条评论,0人参与

请输入评论内容...

请输入评论/评论长度6~500个字

您提交的评论过于频繁,请输入验证码继续

暂无评论

暂无评论

文章纠错
x
*文字标题:
*纠错内容:
联系邮箱:
*验 证 码:

粤公网安备 44030502002758号